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Introduction

“Let me now take a new tack which promises a better wind. Instead of dealing with a pair of
hypersurfaces, let us consider analytic families of hypersurfaces Vr, all having a singular point at the
origin and depending on a set of parameters.” O. Zariski, Presidential Address, Bulletin A.M.S. 77
No. 4 (1971), 481-491 [42].

Given a family of sets or maps, when are all the members the same? When are some of the members
different? Equisingularity is the study of these questions. As Zariski noticed, it is easier to say when
a member of family is different, than it is to say when two sets or two maps are the same. Often the
change in a single invariant suffices to pick out the members which are out of step with the rest.

A basic question is what do we mean by “the same”? And how do we tell when a family of sets
are the same using invariants of the members of the family? These questions are explored in these
lectures.

As Zariski indicates earlier in his address, equisingularity had its roots in both differential topology
and algebraic geometry, and both areas continue to contribute important ideas. The use of algebraic
geometry naturally leads to the use of commutative algebra to count and to control.

In answering the question of what “the same ” means a topologist might ask that the members of the
family be homeomorphic; a differential topologist would ask that some of the infinitesimal structure,
such as limiting tangent planes and secant lines be preserved as well, while an algebraic geometer
might ask that the singularities have the same multiplicity.

In these lectures we work in the complex analytic case using the Whitney conditions or Verdier’s
W, known to be equivalent in the complex analytic case ([39]), to say when the members of a family
are the same. These conditions imply all three of the above possible answers. The theory of integral
closure of ideals and modules provides an algebraic description of these conditions from which we may
abstract the invariants which control them in families.

Here is an overview of my current approach to equisingularity questions. Given a set X, decide
on the landscape that the set is part of. This means deciding on the allowable families that include
the set, and the generic elements that appear in allowable families. Each set should have a unique
generic element that it deforms to, and some elements of the topology of this generic element should
be important invariants of our set. Describing the connection between the infinitesimal geometry of X
and the topology of the generic element related to X is part of understanding the landscape. Based on
the allowable deformations, determine the corresponding first order infinitesimal deformations of X.
These make up a module N(X). The Jacobian module of X, JM(X) is the module generated by the
partial derivatives of a set of defining equations for X. These can be viewed also as the infinitesimally
trivial deformations of X. For the case of sets, the invariants we need for checking condition W come
from the pair (JM(X), N(X)) and N(X) by itself. A change at the infinitesimal level of the family is
always tied to a change in the topology of the generic related elements.

Those who have studied maps using stabilizations ([1]) will recognize many elements of the overview
in that context.

This paper is divided into three lectures with an afterword. They are designed to help you reach
the point where the overview makes sense. In the afterword we will look at the overview again, using
determinantal singularities as an example.

The first lecture introduces the Whitney conditions and Verdier’s condition W , and shows how



Verdier’s condition W can be described using analytic inequalities. In the second lecture, the theory of
the integral closure of ideals and modules is introduced, allowing us to recast the analytic inequalities
of the first lecture in algebraic terms. This lecture contains a new and shorter proof of the integral
closure formulation of Whitney equisingularity, Theorem 2.34. The third lecture introduces the main
source of our invariants–the multiplicity of ideals and modules. In applications these multiplicities are
infinitesimal objects, being intersection numbers connected with conormal spaces. The polar variety
of a module is defined, and in the applications, these are local objects on our families. Through
the Multiplicity Polar Theorem, 3.22, they are connected to our infinitesimal invariants. The third
lecture continues by applying all of these ideas to the study of determinantal singularities, which are
a reasonable next step in complexity beyond complete intersections.

For complete intersections our families are obtained by varying the equations directly; for deter-
minantal singularities we cannot vary the equations freely, but we can vary the entries of the matrix
defining the singularity freely. This is the connection with complete intersections. However, since
determinantal singularities are the inverse images of generic determinantal singularities, the polar
varieties of the generic determinantal singularities contribute to the invariants we need to describe
Whitney equisingularity in this context. (Cf. Theorem 3.28.)

Since these lectures are meant to be a tool for students to enter the subject, there are many exercises
scattered through the lectures. I encourage you to try all of them. There are also some readings which
fill in gaps in the proofs or provide deeper understanding. I encourage you to try these as well.

A first reading which gives an overview of how the material in these lectures developed can be
found on the conference web site, along with the abstract for the course. It is a PDF of the talk I
gave at Aussois in June ’15 to celebrate the 70th birthday of Bernard Teissier. Teissier has made all of
his papers available on his web site, (webusers.imj-prg.fr/ bernard.teissier/articles-Teissier.html) and
many of the suggested readings can be found there.

It is a pleasure to thank the organizers of the conference for giving me the chance to speak about
these beautiful ideas, and to share some of my thoughts about them.
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1 Equisingularity Conditions

We start with some notation to describe a family of sets. In the diagram:



Xd(0) ⊂ X d+k ⊂ Y × CN

0 ∈ Y = Ck

pY πY

the parameter space is Y , X(0) denotes the fiber of the family over {0}, X d+k denotes the total
space of the family which is contained in Y × CN . We usually assume Y ⊂ X d+k, and X = F−1(0),
X(y) = fy

−1(0), where fy(z) = F (y, z).

Given a family of map germs as above, we say the family is holomorphically trivial if there exists
a holomorphic family of origin preserving bi-holomorphic germs ry such that ry(X(0)) = X(y). If the
map-germs are only homeomorphisms we say the family is C0 trivial.

Every subject needs a good example to start with. Here is ours:

Example 1.1. Let X be the family of four moving lines in the plane with equation F (x, y, z) =
xz(z+x)(z− (1+y)x) = 0. Here y is the parameter, the x and z axis are fixed, as is the line z+x = 0
while the line z − (1 + y)x = 0 moves with y. Here is a picture of the total space of the family:

This family is not holomorphically trivial as the next exercise shows, but it should be equisingular
for any reasonable definition of equisingularity.

Problem 1.2. Show that the family of 4 lines is not homomorphically trivial by following the hints
and proving them: If ry is a trivialization of the family of sets, Dry(0) must carry the tangent lines of
X(0) to X(y). If a linear map preserves the lines defined by x = 0, z = 0, z = −x then the linear map
must be a multiple of the identity. Hence ry can’t map z = x to z = (1 + y)x, y 6= 0.

Thus, we need a notion of equisingularity that is less restrictive than holomorphic equivalence.

The Whitney conditions imply C0 triviality but also imply the family is well-behaved at the in-
finitesimal level.

If X is an analytic set, X0 the set of smooth points on X, Y a smooth subset of X, then the pair
(X0, Y ) satisfies Whitney’s condition A at y ∈ Y if for all sequences {xi} of points of X0,

{xi} → y
{TXxi} → T

⇒ T ⊃ TYy



The pair (X0, Y ) satisfies Whitney’s condition B at y ∈ Y if for all sequences {xi} of points of
X0,

{xi} → y
{TXxi} → T

sec(xi, πY (xi))→ L
⇒ T ⊃ L

Problem 1.3. Show that the family of 4 lines satisfies the Whitney conditions. (Hint: The family
consists of submanifolds meeting pairwise transversely.)

Example 1.4. This is a famous example used in many singularities talks. X is defined by F (x, y, z) =
z3 + x2 − y2z2 = 0. The members of the family X(y) consist of node singularities where the loop is
pulled smaller and smaller as y tends to zero, becoming a cusp at y = 0. Here is a picture:

The singular locus is the y-axis. Whitney A holds because every limiting tangent plane contains the
y-axis. But Whitney B fails. Notice that the parabola z = y2 is in the surface, and letting xi = (0, ti, ti

2)
and yi = (0, ti, 0), ti any sequence tending to 0, we see that the limiting secant line is the z-axis, while
the limiting tangent plane along this curve is the xy-plane.

We see that the dimension of the limiting tangent planes at the origin is 1, while it is zero elsewhere
on the y-axis. This kind of drastic change at the infinitesimal level is prevented by the Whitney
conditions.

Reading You can read about the Whitney conditions in many places. Two references are the first
chapter of [8], and Chapter III of [39]. The latter is more in the spirit of the way we are developing
the subject, though harder. When you begin to study the polar varieties of a module in the third
lecture, the lectures of Teissier [40] on the historical development of the polar variety of a space, and
its connections to the Whitney conditions are very interesting. ( Among other things, he explains why
they are called “polar” varieties.)



Verdier’s condition W

The next condition, while equivalent to the Whitney conditions in the complex analytic case (proved
by Teissier [39]) is easier to work with using algebra.

Condition W says that the distance between between the tangent space to X at a point xi of X0

and the tangent space to Y at y goes to zero as fast as the distance between xi and Y . We first need
to define what we mean by the distance between two linear spaces.

Suppose A, B are linear subspaces at the origin in CN , then define the distance from A to B as:

dist(A,B) = sup
u ∈ B⊥ − {0}
v ∈ A− {0}

‖(u, v)‖
‖u‖ ‖v‖

.

In the applications B is the “big” space and A the “small” space. The inner product is the Hermitian
inner product when we work over C. The same formula also works over R.

Example 1.5. For this example, we work with linear subspaces of R3. Let A = x-axis, B a plane with
unit normal u0, then the formula for the distance from A to B reduces to cos θ, where θ is the small
angle between u0 and the x-axis, in the plane they determine. So when the distance is 0, B contains
the x-axis.

We recall Verdier’s condition W.

Definition 1.6. Suppose Y ⊂ X̄, where X, Y are strata in a stratification of an analytic space, and
dist(TY0, TXx) ≤ Cdist(x, Y ) for all x close to Y . Then the pair (X, Y ) satisfies Verdier’s condition
W at 0 ∈ Y .

Problem 1.7. Show that W fails for Teissier’s example for X0, Y where Y is the y-axis at the origin.

As a first step to understanding the condition, we consider the case where X is a hypersurface in
Cn. We would like to re-write this condition in terms of F where F defines X. This will allow us to
develop an algebraic formulation of the W condition.

Set-up: We use the basic set-up with X k+n a family of hypersurfaces in Y k × Cn+1.

Proposition 1.8. Condition W holds for (X0, Y ) at (0, 0) if and only if there exists U a neighborhood
of (0, 0) in X and C > 0 such that

‖∂F
∂yl

(y, z)‖ ≤ C sup
i,j
‖zi

∂F

∂zj
(y, z)‖

for all (y, z) ∈ U and for 1 ≤ l ≤ k.

Proof. In this set-up, Y is a k-plane, so we will set A = Y , and calculate the distance between
Y and a tangent plane to X0 at (y, z) which is our B. At a smooth point of X k+n, we can use

DF (y, z)/‖DF (y, z)‖ for u ∈ B⊥, and the standard basis for the vectors from A.

Then the distance formula says that condition W holds if and only if

sup
1≤l≤k

‖ ∂F
∂yl

(y, z)‖
‖DF (y, z)‖

≤ C ′′dist((y, z), Y ) = C ′ sup
1≤i≤n+1

‖zi‖

This is equivalent to

‖∂F
∂yl

(y, z)‖ ≤ C sup
1≤i≤n+1

‖zi‖ sup
1≤j≤n+1

‖∂F
∂zj

(y, z)‖



From which the desired result follows.

Denote the ideal generated by the partial derivatives of F with respect to the z variables by Jz(F ),
and the ideal generated by zj by mY . Then zi

∂F
∂zj

are a set of generators for mY Jz(F ). The inequality

above says that the partial derivatives of F with respect to yl go to zero as fast as the ideal mY Jz(F ).
We will examine the implications of this in the next section.

Reading After you read a little about the integral closure of ideals, reading p589-605 [37] will give
you a good background on the integral closure approach to Whitney equisingularity for hypersurfaces
with isolated singularities.

2 The Theory of Integral Closure of Ideals and Modules

Many operations on ideals and submodules of a free module come from operations on rings. (For other
examples of this, see [16], [15], [25].)

We illustrate this idea by reviewing the notions of the integral closure of a ring and the normalization
of an analytic space.

Definition 2.1. Let A,B be commutative Noetherian rings with unit, A ⊂ B a subring. Then h ∈ B
is integrally dependent on A if there exists a monic polynomial f(T ) = T n +

∑
i=0

fiT
i, fi ∈ A such that

f(h) = 0. The integral closure of A in B consists of all elements of B integrally dependent on A.

Example 2.2. Let A be the ring of convergent power series in the germs t2 and t3, denoted C{t2, t3},
B = C{t}. Then if f(T ) = T 2 − t2 we have f(t) = 0, so t is integrally dependent on A. In fact, B is
the integral closure of A in B.

Definition 2.3. Let A be the local ring of an analytic space X, x, B the ring of meromorphic functions
on X at x; the space associated with the integral closure of A in B is the normalization of X.

Example 2.4. Let A = C{t2, t3}, B = C{t}. Then A is the local ring at the origin of the cusp
x3− y2 = 0, and since t3/t2 = t, the ring of meromorphic functions on X at the origin is C{t}. So by
the previous example the normalization of the cusp is a line.

In this context a ring A is normal if the integral closure of A in its quotient field is A. A space
germ is normal if its local ring is normal. Normal spaces have nice properties–they are non-singular in
codimension 1 and the Riemann removable singularities theorem is true for them. Given a space germ
X, we always have a map πNX from the normalization of X, denoted NX, to X which is finite and
generically 1-1. NX and πNX are unique up to holomorphic right equivalence. You can read proofs of
these facts in [26] p 154-163, working backwards as necessary.

The following exercise is easy assuming the facts in the last paragraph.

Problem 2.5. Show that the normalization of an irreducible curve germ X, x is C, 0.

If you know a little bit about singularities of maps, the next exercise is also easy.

Problem 2.6. Suppose f : Cn, 0 → Cp, 0, n < p and f is a finitely determined map-germ. Show
(Cn, 0), f is a normalization of the image of f .



Basic Results from the Theory of Integral Closure for Ideals

The operation of integral closure of rings creates, as we shall see, an operation on ideals, the
operation of forming the integral closure of I, which is an ideal, denoted I. Assume I is an ideal
in OX,x, f ∈ OX,x. In discussing the properties of integral closure, sometime we work on a small
neighborhood of X. In this case, I refers to the coherent sheaf I generates on U .

List of Basic Properties f is integrally dependent on I if one of the following equivalent conditions
obtain:

(i) There exists a positive integer k and elements aj in Ij, so that f satisfies the relation fk +
a1f

k−1 + · · ·+ ak−1f + ak = 0 in OX,0.

(ii) There exists a neighborhood U of 0 in CN , a positive real number C, representatives of the
space germ X, 0 the function germ f, and generators g1, . . . , gm of I on U, which we identify with the
corresponding germs, so that for all x in U we have: ‖f(x)‖ ≤ C max{‖g1(x)‖, . . . , ‖gm(x)‖}.

(iii) For all analytic path germs φ : (C, 0) → (X, 0) the pull–back φ∗f = f ◦ φ is contained in the
ideal generated by φ∗(I) in the local ring of C at 0. If for all paths φ∗f is contained in φ∗(I)m1, then
we say f is strictly dependent on I and write f ∈ I†.

Let NB denote the normalization of the blowup of X by I, D̄ the pullback of the exceptional divisor
of the blowup of X by I to NB by the normalization map. Then we have:

(iv) For any component C of the underlying set of D̄, the order of vanishing of the pullback of f to
NB along C is no smaller than the order of the divisor D̄ along C. This implies that the pullback of
f lies in the ideal sheaf generated by the pullback of I.

The set of all elements of OX,x which are integrally dependent on I is the integral closure of I and
is denoted I.

Proposition 2.7. If I is an ideal in OX,x, then so is I.

Proof. We use property iii). Let φ : (C, 0)→ (X, 0) be any analytic curve, g ∈ OX,x, f1, f2 in I. Then
(gf1 + f2) ◦ φ = (g ◦ φ)(f1 ◦ φ) + (f2 ◦ φ) ∈ φ∗(I), since φ∗(I) is an ideal in O1.

The proof of this for general rings is Corollary 1.3.1 of [36].

The first property is usually taken as the definition, and shows that integral dependence is an
algebraic idea. This permits the extension of the concept to ideals in any ring. For the development
of the idea of the integral closure of an ideal or module from the algebraic point of view see [36].

The second property is used to control equisingularity conditions. It already appeared in the
discussion of Verdier’s condition W in the hypersurface case earlier, and we will revisit it shortly.

The third property is convenient for computations, and often for proofs as the proof of the previous
proposition shows. It is also helpful in understanding conditions involving limits. In the analytic
setting, definitions that use sequences of points, such as the Whitney conditions, can be checked with
curves, often leading to an interpretation of the condition in terms of the integral closure of an ideal
or module. We will see an example of this in the study of limiting tangent hyperplanes in the next
section.

The notion of strict dependence defined in the third property is used to describe properties like
Whitney A, or Thom’s Af condition where integral dependence is insufficient–see the problem later
on about Whitney A.



Given a curve φ(s), and a germ f , if f ◦ φ is defined, it is equal to csr mod mr+1
1 for c 6= 0 for some

r. We call r the order of f on φ and write fφ = r, and Jφ for the order of an ideal J on φ.

Because the exceptional divisor of the blow-up of the Jacobian ideal tracks limiting infinitesimal
information, the fourth property is perhaps the most important. Since NB is normal, each component
of the exceptional divisor is generically a smooth submanifold of a manifold, so the ideal vanishing
on the component is locally principal. This means we can talk about the order of vanishing on each
component. The order of the divisor D̄ is just the order of vanishing along the component of the
pullback of I to NB. Concretely, pick a local generator u of the ideal of the component, and write the
elements of I in terms of u. The smallest power of u that appears is the order of I along C.

The fourth property also shows how a closure operation on rings gives a closure operation on ideals–
start with a ring and an ideal, enlarge the ring by a closure operation, look at the ideal generated in
the new ring, then intersect with the original ring to define the closure operation on the ideal.

Reading For detailed proofs of the equivalences between these properties see [33] p 18-27. You can
download this paper from Teissier’s list of publications–it is #15. Try this after reading the proofs of
the equivalences contained here.

In the next example, we practice using the first property.

Example 2.8. Let A = O2, I = (xn, yn). Suppose f = xiyj, i+j ≥ n. Consider the monic polynomial
h(T ) = T n − (xn)i(yn)j. Since (xn)i(yn)j is in (I i)(Ij) ⊂ I i+j ⊂ In, and h(f) = 0, then f ∈ I.

Now we do a computation using the third property.

Example 2.9. Let A = O2, I = (xa, yb). Given m = xiyj define the weight of m to be bi + aj,
given f(x, y), define the weight of f to be the minimum weight of all monomials appearing in a power
expansion of f . We will show that I consists of all f such that weight of f ≥ ab.

First, we’ll show weight of m ≥ ab implies m ∈ I. It suffices to check this for curves φ(t) = (tr, ts)
as higher order terms don’t affect the order of I or m on the curve. Since I is an ideal, this will show
that f ∈ I.

We have Iφ =min{ra, sb}; assume ra ≤ sb.

It is convenient to think of the monomial xiyj as the point (i, j) in the xy-plane. Consider the
parallel lines rx+ sy = c. Then if m is any monomial on this line, mφ = c, and mφ > c if m lies above
this line. If the weight of m ≥ ab then m lies above or on the line connecting (a, 0) and (0, b), so it
will lie above or on any line passing through (a, 0), which lies below or on (0, b). This implies that
mφ ≥ ra and shows m ∈ I.

Suppose the power expansion of f contains a monomial m which lies below the line connecting
(a, 0) and (0, b). Then the convex hull of the monomials appearing in f has a vertex m′ which lies
below the line connecting (a, 0) and (0, b). We can find a line passing through this vertex which lies
below (a, 0) and (0, b). Then for the curve ψ defined by this line,

fψ = m′ψ < Iψ

which shows that f /∈ I.

This kind of reasoning is very useful in studying properties of ideals which are well connected to
their Newton polygons. In this example, the Newton polygon of I is all the points of R2 above or
on the line connecting (a, 0) and (0, b) in the first quadrant. For more examples and details see [38],
which is #46 on Teissier’s publication list or [35].

Next, we use property 2 to characterize Verdier’s W in the hypersurface case.

Set-up: We use the basic set-up with X k+n a family of hypersurfaces in Y k × Cn+1.



Proposition 2.10. Condition W holds for (X0, Y ) at (0, 0) if and only if ∂F
∂yl
∈ mY Jz(F ) for 1 ≤ l ≤ k.

Proof. By the last proposition of the first section we know that W holds if and only if

‖∂F
∂yl

(y, z)‖ ≤ C sup
i,j
‖zi

∂F

∂zj
(y, z)‖

But, by property 2 this is equivalent to ∂F
∂yl
∈ mY Jz(F ) for 1 ≤ l ≤ k.

If we have a curve φ on X k+n, φ(0) = 0, and the image of φ in X k+n
0 except at 0, and J(F )φ = r

then we can calculate the limiting tangent hyperplane to X k+n along φ as

limit
s→0

(1/sr)(DF (φ(s)))

If ∂F
∂yl
∈ Jz(F ) for 1 ≤ l ≤ k, then the limiting plane is never vertical, but it does not necessarily

contain Y .

Problem 2.11. Show that if ∂F
∂yl

for 1 ≤ l ≤ k is strictly dependent on Jz(F ) then every limit of

tangent planes along every curve φ not in V (Jz(F )) contains Y .

Problem 2.12. Show that if ∂F
∂yl

for 1 ≤ l ≤ k is strictly dependent on Jz(F ) then WA holds.

We will prove a few of the implications showing the equivalence of the basic properties.

Proposition 2.13. Property 1 implies property 3

Proof. Let f satisfy the relation fk + a1f
k−1 + · · · + ak−1f + ak = 0 in OX,0, and let φ : C, 0→ X, 0.

Choose g ∈ I such that gφ = Iφ. We may assume the image of φ does not lie in V (I). Then

(f ◦ φ)k

(g ◦ φ)k
+
a1 ◦ φ
(g ◦ φ)

(f ◦ φ)k−1

(g ◦ φ)k−1
+ · · ·+ ak−1 ◦ φ

(g ◦ φ)k−1

(f ◦ φ)

(g ◦ φ)
+

ak ◦ φ
(g ◦ φ)k

= 0

and ai◦φ
(g◦φ)i

is holomorphic for all i. Since O1 is normal, it follows that (f◦φ)
(g◦φ)

is holomorphic, hence

f ◦ φ ∈ φ∗(I).

Proposition 2.14. Property 3 implies property 4

Proof. We will only prove this for the case where V (I) = 0.

Consider the components {Ci} of D̄. Since NB is normal and the Ci have codimension 1, we can

pick out points ci on each Ci and curves φ̃i, such that φ̃i(0) = ci, and φ̃i is transverse to Ci. We can
choose ci so that π∗NB(I) vanishes only on Ci in a neighborhood of ci, and the same is true for f ◦πNB.
If ui defines Ci at ci, then we have f ◦πNB = hiui

fi , hi a unit. The exponent fi is the order of vanishing
of f along Ci. Since φ̃i is transverse to Ci at ci, ui ◦ φi(t) = t, so f ◦ πNB ◦ φi(t) = h′i(t)t

fi , h′ a unit.

We can also find local generators of π∗NB(I) of form ui
Ii where Ii is the order of I along Ci. Now

πNB ◦ φ̃i is a map from C, 0 → X, 0, since πNB(Ci) = 0, and hence πNB(ci) = 0. (This is the reason
for restricting to this case.) Hence, if property 3 holds, fi ≥ Ii for all i. If we work at any point of D̄
since π∗NB(I) is principal, we can find g ◦πNB a local generator then f ◦πNB/g ◦πNB is a meromorphic
function which is well defined off a set of codimension 2. Since NB is normal, the function is analytic,
so f ◦ πNB ∈ π∗NB(I).

Proposition 2.15. Property 4 implies property 2



Proof. Choose a compact neighborhood U of 0, and consider its inverse image in NB. The inverse
image must be compact as well. So, since f ◦πNB ∈ π∗NB(I), we can cover π−1

NB(U) with a finite number
of sets and choose elements of I such that

‖f ◦ πNB(p′)‖ ≤ C max{‖g1 ◦ πNB(p′)‖, . . . , ‖gm ◦ πNB(p′)‖}

holds on π−1
NB(U). Then it is clear that

‖f(πNB(p′))‖ ≤ C max{‖g1(πNB(p′))‖, . . . , ‖gm(πNB(p′))‖}.

Since πNB surjects on U , this finishes the proof.

There is a nice corollary of the method of proof used in the previous proposition and of property
2 which we now describe. Given a subset S of an analytic set X, f : X,S → Y, y where S = f−1(y)
denotes the germ of an analytic map along S. Given an ideal I in OY,y, f ∗(I) denotes the ideal sheaf
along S obtained by pulling back I by f .

Proposition 2.16. Suppose f : X,S → Y, y where S = f−1(y), f proper and surjective. Suppose I an

ideal of OY,y, h ∈ OY,y. Then h ∈ I if and only if h ◦ f ∈ f ∗(I) along S.

Proof. Since f is proper, S is compact, and as in the last proof we can cover S with a collection of
neighborhoods such that on the union the germ of a function along S is in f ∗(I) if an only if it satisfies
an analytic inequality of the type described by property 2. Since f is surjective, the inequalities push
down/pullback to Y, y.

Problem 2.17. Use the finite map f(x, y) = (xb, ya) to give another proof that (xa, yb) consists of all
g such that weight of g ≥ ab.

We have Prop 2.10 to describe W for hypersurfaces, but what about sets of higher codimension?
We will see that the theory of integral closure of modules provides the tools we need to describe the
higher codimension case.

The Theory of Integral Closure for Modules: Motivation

Verdier’s condition W is based on the distance between the tangent space TXx to X at smooth
points x and the tangent space T to Y . Recall this distance is defined as

dist(T, TXx) = sup
u ∈ TX⊥x − {0}
v ∈ T − {0}

‖(u, v)‖
‖u‖ ‖v‖

.

If u ∈ TX⊥x − {0}, then the set of points perpendicular to u consists of a hyperplane which contains
TXx. These hyperplanes are called tangent hyperplanes; denote a tangent hyperplane to X, x by Hx,
and the collection of all tangent hyperplanes to X, x by C(X)x. Then we can rephrase the distance
formula as

dist(T, TXx) = sup
Hx∈C(X)x

dist(T,Hx)

If X = F−1(0) where F : Cn → Cp, then at a smooth point p of X, the projectivisation of the
rowspace of the matrix of partial derivatives of F is C(X)p. Since the tangent hyperplanes are what
we need to control the distance between the tangent space of X, p and TY, 0, this suggests we should



look at the module generated by the partial derivatives of F denoted JM(X), just as we looked at
J(F ) in the hypersurface case.

Basic Results from the Theory of Integral Closure for Modules

Notation: M ⊂ N ⊂ F p, F p a free OX,x module of rank p, M,N submodules of F . If M is generated
by g generators {mi}, then let [M ] be the matrix of generators whose columns are the {mi}.

We will develop properties for modules similar to those for ideals; however a convenient entry way
into the theory is:

Definition 2.18. If h ∈ F p then h is integrally dependent on M , if for all curves φ, h ◦ φ ∈ φ∗(M).
The integral closure of M denoted M consists of all h integrally dependent on M .

A good very basic reference on properties of integral closure of modules is [9, p. 301-307]. The
development of these ideas in the setting of modules over commutative rings can be found in [36]
starting with chapter 16.

Problem 2.19. M is a module, M = M

Example 2.20. Let [M ] =

[
x y 0
0 x y

]
, then M = m2O2

2.

It is clear that M ⊂ m2O2
2; we will show that

(
y
0

)
∈M .

Given a curve φ we can assume yφ < xφ otherwise

(
y ◦ φ

0

)
∈
(
x ◦ φ

0

)
O1.

Then (
y
0

)
◦ φ =

(
y
x

)
◦ φ− x/y ◦ φ

(
0
y

)
◦ φ

where x/y ◦ φ ∈ O1.

Connection with the theory of integral closure of ideals I

Notation: Given an element h ∈ F and a submodule M , then (h,M) denotes the submodule
generated by h and the elements of M . Given a submodule N of F , Jk(N) denotes the ideal generated
by the set of k by k minors of a matrix whose columns are a set of generators of N . If M is an OX
module then the rank of M is k on a component V of X if Jk(M) 6= (0) on V and k is the largest
value for which this is true.

Theorem 2.21. (Jacobian principle) Suppose the rank of (h,M) is k on each component of (X, x).

Then h ∈M if and only if Jk(h,M) ⊂ Jk(M)

Proof. The complete proof appears in [9, p. 304]. The easy part is to show that h ∈ M implies

Jk(h,M) ⊂ Jk(M).

We have
φ∗(Jk(h,M)) = Jk(φ

∗(h,M)) = Jk(φ
∗(M) = φ∗(Jk(M))

which implies the result.

The problem in the other direction is checking for curves which lie in the set of points where the
rank is less than maximal, so that all the elements of Jk(h,M) vanish, but h doesn’t vanish. We
approach this problem in two steps.



Assume first that the image of our curve φ does not lie entirely in V (Jk(h,M)).

Then, by hypothesis φ∗(Jk(h,M)) = φ∗(Jk(M)) 6= 0. So, there is a non-zero minor of the matrix
of generators [M ], of M , J(I,K) such that J(I,K) ◦ φ is generator of φ∗(Jk(M)). Here I is an index
of the rows and K an index of the columns which comprise the k× k submatrix whose determinant is
J(I,K).

Consider MI,K the submodule of F k defined using as matrix of generators the square submatrix
of [M ] whose determinant is J(I,K), and let hI be the element obtained from h by using the entries
indexed by I.

Applying Cramer’s rule, we have that hI ◦ φ ∈ φ∗(MI,K), where hI ◦ φ(t) = ([MI,K ] ◦ φ(t))ξ(t) for
some column vector ξ(t), given by composing the output of Cramer’s rule with φ(t). Let [MK ] be the
submatrix of [M ] using the columns indexed by K. Consider hI ◦ φ(t) − ([MK ] ◦ φ(t))ξ(t). If this is
zero, we have checked the condition for φ. If it is not zero, then φ∗(h,M) has rank greater than k
which is a contradiction.

Now suppose the image of φ does lie entirely in V (Jk(h,M)), so φ∗(Jk(h,M)) = 0.

Here the argument breaks into two parts again. We first assume X is smooth so that we can vary
the curve freely, then we use the resolution of singularities to reduce to the smooth case.

Suppose φ∗(M) 6= φ∗(h,M). Now, by the Artin-Rees theorem we know that there exists ν0 > 0,
ν0 ∈ Z such that

ml
1O

p
1 ∩ φ∗(h,M) = ml−ν0

1 (mν0
1 O

p
1 ∩ φ∗(h,M)).

This implies, that in fact,
φ∗(M) 6= φ∗(h,M) mod ml

1O
p
1

for any l > ν0. If not, then h ◦ φ = g mod φ∗(M), with g ∈ ml
1O

p
1, and so

g ∈ ml
1O

p
1 ∩ φ∗(h,M),

hence
g, h ◦ φ ∈ φ∗(M) +m1(mν0

1 O
p
1 ∩ φ∗(h,M)).

Since φ∗(M) +m1φ
∗(h,M) = φ∗(h,M), Nakayma’s lemma would imply the result.

Now choose l > ν0; since X is smooth, we can find a curve φ1, by changing terms of the power
series expansion φ of order ≥ l, such that the image of φ1 does not lie in V (Jk(h,M)).

This implies that
φ∗1(M) = φ∗(M) mod ml

1O
p
1

φ∗1(h,M) = φ∗(h,M) mod ml
1O

p
1

φ∗1(M) = φ∗1(h,M)

This gives a contradiction in this case.

If X is not smooth, then we can make a resolution, X̃, π, of singularities of X, lift φ to φ̃ on X̃.
Then φ∗(M) 6= φ∗(h,M) if and only if φ̃∗π∗(M) 6= φ̃∗π∗(h,M), then we can again vary φ̃∗ as before.

If h ∈M , this last proposition allows us to to do more than show h ∈M along curves.

Proposition 2.22. Suppose h ∈ M , then there exists an open cover {UI,K} of the complement of
V (J(M)), such that on each UI,K, h = [M ]ξI,K, where the entries of ξI,K are locally bounded on UI,K.

Proof. The open cover {UI,K} is constructed by constructing an open cover {VI,K} of the fiber over
the origin in NBJ(M)(X) such that on each VI,K , the pullback of J(I,K) is a local generator of the



pullback of J(M). Then Cramer’s rule applies, and the pullbacks of the ξI,K are holomorphic, hence
locally bounded on the images of the VI,K which are the UI,K .

As another application we can develop the analogue of property 2 for ideals.

Proposition 2.23. ([9], Prop 1.11) Suppose h ∈ OpX,x , M a submodule of OpX,x of generic rank k on

each component of X. Then h ∈M if and only if for each choice of generators {si} of M , there exists
a constant C > 0 and a neighborhood U of x such that for all ψ ∈ Γ(Hom(Cp,C)),

‖ψ(z) · h(z)‖ ≤ C sup
i
‖ψ(z) · si(z)‖

for all z ∈ U .

For each choice of ψ, the {ψ ·si(z)} give a linear combination of the rows of [M ] at each point, while
ψ(z) · h(z) is the analogous combination of the entries of h. So the inequality of the theorem relates
the size of row vectors of [M(x)] to corresponding combinations of the entries of h. The constant C
and the neighborhood U depend on h and M but not on ψ.

Proof. We will use the Jacobian principle to show that the inequality implies the integral closure
inclusion, by using special ψi.

Let SI be a k × (k − 1) submatrix of [M ], going through all such submatrices as I varies, let
hI be a k-tuple gotten by dropping the same entries from h as rows from [M ] in forming SI . Let
ψI(z)(h(z)) = det[hI(z), SI(z)]. Note that ψI(z)si(z) = det[si(z), SI(z)], a generator of Jk(M).

The inequality which we are assuming then shows that Jk(h,M) ⊂ Jk(M), which gives the result
by the Jacobian principle.

A weaker version of the other direction is easy; if h ∈ M , then for any curve φ, (ψ(z) · h(z)) ◦ φ ∈
φ∗({ψ(z) · si(z)}), hence (ψ(z) · h(z)) ∈ ({ψ(z) · si(z)}). Then the result follows by property 2 for
ideals. However, here the constant does depend on ψ.

Instead we argue like this. Let {si} be a set of generators of M . Applying property 2 to the finite
set of elements {gi} that make up the numerators of the entries of the ξI,K in the last proposition, we
have that there exists U and C such that if gi is such a numerator, then

‖gi(z)‖ ≤ C sup ‖JI,K(z)‖.

We have that JI,K(z)h(z) =
∑
gisi for appropriate gi. Then working first at z /∈ V (J(M))

‖ψ(z) · h(z)‖ = ‖
∑

(gi/J(I,K))(z)ψ(z) · si(z)‖ ≤ CN sup
i
‖ψ(z) · si(z)‖

where N is the number of terms in the sum. Since the inequality is between continuous functions and
holds on an open dense subset of U it holds on U .

Corollary 2.24. Suppose h ∈ OpX,x, M a submodule of OpX,x of generic rank k on each component of

X. Then h ∈M if and only if for each choice of generators {si} of M , there exists a constant C > 0
and a neighborhood U of x such that for all T ∈ Cp,

‖T · h(z)‖ ≤ C sup
i
‖T · si(z)‖

for all z ∈ U .

Proof. In one direction, take ψ to be constant; in the other we can replace T by ψ, using the fact that
the constance C is independent of the choice of T .



The corollary reflects the equivalence of h ∈ M and ρ(h) ∈ M. (The notions of ρ(h), M and the
equivalence will be developed later.)

There is a useful variant of the last Proposition.

Proposition 2.25. ([21]) For a section h ∈ OpX to be integrally dependent on M at 0, it is necessary
that, for all maps φ : (C, 0) → (X, 0) and ψ : (C, 0) → (Hom(Cp,C), λ) with λ 6= 0, the function
ψ(h ◦ φ) on C belong to the ideal ψ(M ◦ φ).

Conversely, it is sufficient that this condition obtain for every φ whose image meets any given dense
Zariski open subset of X.

We will use these ideas to extend our criterion for condition W to equidimensional sets of any
codimension, but first we develop the analogue of property 4 for modules.

Blowing up modules and Connection with Ideals II

We now develop the analogue of property 4 for modules. We will want a construction that works
for pairs of submodules, not just a single submodule.

Given a submodule M of a free OXd module F of rank p, we can associate a subalgebra R(M) of
the symmetric OXd algebra on p generators. This is known as the Rees algebra of M . If (m1, . . . ,mp)
is an element of M then

∑
miTi is the corresponding element of R(M). Then Projan(R(M)), the

projective analytic spectrum of R(M) is the closure of the projectivised row spaces of M at points
where the rank of a matrix of generators of M is maximal. Denote the projection to Xd by c, or by
cM where there is ambiguity.

Example 2.26. If M is the Jacobian module of X, then Projan(R(M)) is C(X), the projectivised
conormal space of X.

If M is a submodule of N or h is a section of N , then h and M generate ideals on ProjanR(N);
denote them by ρ(h) and M. If we can express h in terms of a set of generators {ni} of N as

∑
gini,

then in the chart in which T1 6= 0, we can express a generator of ρ(h) by
∑
giTi/T1.

Example 2.27. If M is the Jacobian module of X and N = F p then V (M) consists of pairs (x, L)
where x ∈ X and L ∈ PHom(Cp,C), and L ◦DF (x) = 0. If H is the hyperplane which is the kernel
of L, then the image of DF (x) lies in H.

Using Proposition 2.24 it is easy to show that h is integrally dependent on M at the origin, if and
only the ideal sheaf induced from h is integrally dependent as an ideal sheaf onM along 0× Pp−1. In
other words, if and only if ρ(h) is integrally dependent onM. The combination ψ(t), φ(t) amounts to
giving path on X×Pp−1. This is the second connection between integral closure of ideals and modules.

Looking at a pair (M,N) allows us to “strip out” one copy of N from M , as the following example
shows.

Example 2.28. Let M = I = (x2, xy, z) = J(z2 − x2y) and N = J = (x, z). M is the Jacobian
ideal of the Whitney umbrella, and N defines the singular locus of the umbrella. So, working on C3

ProjanR(N) = BJ(C3), which has ring R = C[T1, T2]/(zT1 − xT2), and where the map from R(N)
to R is given by x → T1, z → T2. Writing the generators of I in terms of the generators of J as
x2 = x ·x, xy = y ·x, z = z the map from R(I) to R has image (xT1, yT1, T2) and this induces the ideal
sheaf I on ProjanR(N). We see that this is supported only at the point (0, [1, 0]).

The next proposition and the ideas behind it, is very useful in the study of determinantal singular-
ities. It is also a good example of stripping a copy of a module N from M .



Proposition 2.29. Suppose M ⊂ N ⊂ OpX,0 are OpX modules with matrix of generators [M ], [N ], and
[F ] is a matrix such that [M ] = [N ][F ]. Let F be the ideal sheaf induced on Projan(R(N)) by the
module F with matrix of generators [F ]. Then M = N if and only if V (F) is empty.

Proof. We are going to apply 2.25, so we must show that for all maps φ : (C, 0) → (X, 0) and
ψ : (C, 0) → (Hom(Cp,C), λ), that the order in t of ψ(t)[M ] ◦ φ(t) and ψ(t)[N ] ◦ φ(t) are the same.
We have

ψ(t)[M ] ◦ φ(t) = ψ(t)[N ][F ] ◦ φ(t).

Suppose the order of ψ(t)[N ] ◦ φ(t) in t is k. Then we can lift φ, ψ to a curve on Projan(R(N))
as follows. Define Φ: C, 0 → X × Pg(N)−1, by Φ(t) = (φ(t), [(1/tk)(ψ(t)[N ] ◦ φ(t)]). We have Φ(0) =
(0, lim

t→0
(1/tk)(ψ(t)[N ] ◦ φ(t)), and the image of Φ for t 6= 0 clearly lies in Projan(R(N)).

Given an element f ∈ F , the value of f along Φ is (φ(t), [(1/tk)(ψ(t)[N ]f̃ ◦ φ(t)]), where f̃ is the
element of F which induces f . Then V (F) is empty if and only if the order of F along all Φ is zero.
Since [M ] = [N ][F ] this is equivalent to the order of M and N being the same on (ψ, φ).

Notice that if M ⊂ N and F are as above then the inclusion of M in N always induces a map from
Projan(R(N)) \ V (F) to Projan(R(M)). The map is given by taking (x, p) to (x,F(p)), where F(p)
is evaluation of the set of generators of F which come from the columns of [F ]. The next corollary
includes this setting in our discussion of reduction.

Corollary 2.30. Suppose M and N as above, then the following are equivalent:

1. M is reduction of N .

2. V (F) is empty.

3. The induced map is a finite map from Projan(R(N)) to Projan(R(M)).

Proof. 1) and 2) are equivalent by the previous proposition. The material in section 2 of [31] shows
that the induced map is finite if and only if V (F) is empty.

Here is a typical way that 3) is used.

Proposition 2.31. Suppose N ⊂ F , F a free OX,x module, and suppose the fiber of ProjanR(N)
over x has dimension k. Then N has a reduction M , where M is generated by k + 1 elements.

Proof. Let g be the number of generators of N , so we view ProjanR(N) as a subset of X × Pg−1.
For a generic choice of plane P in Pg−1 of codimension k + 1, the intersection of P and the fiber
of ProjanR(N) over x is empty. We can choose coordinates on Pg−1 so that the plane given by
T1 = · · · = Tk+1 = 0 is such a plane, Ti coordinates on Pg−1. Choosing coordinates on Pg−1 is
equivalent to choosing generators on N . Let M be the submodule of N generated by the first k + 1
generators of N after the new choice of generators. Then the projection onto the first k+1 coordinates
of Pg−1, when restricted to ProjanR(N) gives a finite map to ProjanR(M). Hence M is a reduction
of N by 3).

Corollary 2.32. Suppose N ⊂ F , F a free OX,x module, Xd equidimensional, N has generic rank e
on each component of X, x, then N has a reduction with d+ e− 1 generators.



Proof. Since the generic rank of N is e, the generic fiber dimension of ProjanR(N) is e − 1, so the
dimension of ProjanR(N) is d + e − 1. Then d + e − 2 is the largest the dimension of the fiber of
ProjanR(N) over x can be, so N has a reduction with (d+ e− 2) + 1 generators.

Having defined the ideal sheafM, we blow up by it. The advantages of this we will see in the next
section, as it gives a constructive/geometric way to calculate the multiplicity of a pair of modules. But
for now, this gives the context for which property 4 in the ideal case holds. As an example of how
the blow up comes up, if we are in the basic set-up, and M = mY JM(X ) then the blow up by M is
the blowup of the conormal of X by the ideal defining the stratum Y . Teissier has shown ([39]) that
condition W holds for the pair (X0, Y ) at the origin if and only if the exceptional divisor of this blow
up is equidimensional over Y . We will see the proof of one direction of this in the next section as well.

To state our result some more notation is needed. Given M a submodule of N ⊂ F p, h ∈ N , let
NBM(ProjanR(N)), πM be the normalized blow-up of ProjanR(N) by M with projection πM to
ProjanR(N).

Proposition 2.33. (Analogue of Property 4 for ideals) In the above set-up h ∈ M if and only if
π∗M(ρ(h)) ∈ π∗M(M).

Proof. We give the proof for the case where N is free for simplicity. We apply proposition 2.24, so
h ∈M if and only if for all φ : (C, 0)→ (X, 0) and ψ : (C, 0)→ (Hom(Cp,C), λ), we have the function
ψ(h ◦ φ) on C belongs to the ideal ψ(M ◦ φ). Giving the pair (φ, ψ) is equivalent to giving a path on
X × Pp−1, the order of ρ(h) on the path is the order of ψ(h ◦ φ). So 2.24 is equivalent to h ∈ M if
and only if the ideal sheaf induced by ρ(h) is in the integral closer of the ideal sheaf M. In turn, by
property 4 for ideals, this implies the result.

As an application we can extend our criterion for condition W to equidimensional sets of any
codimension.

Set-up: We use the basic set-up with X k+n an equidimensional family of equidimensional sets, X k+n ⊂
Y k × CN , JM(X) ⊂ Op.

Proposition 2.34. Condition W holds for (X0, Y ) at (0, 0) if and only if ∂F
∂yl
∈ mY JM(F ) for 1 ≤

l ≤ k.

Proof. We re-work the form of Verdier’s condition W to fit our current framework. If we work at a
smooth point x of X, then a conormal vector u of X at x can always be written as S ·DF (x), where
S ∈ Cp; S is not unique unless DF (x) has rank p. Conversely, any such S gives a conormal vector. It
is clear also that W holds if the distance inequality holds for the standard basis for the tangent space
T of Y . Then

dist(T, TXx) = sup
u ∈ TX⊥x − {0}
v ∈ T − {0}

‖(u, v)‖
‖u‖ ‖v‖

.

becomes



dist(T, TXx) = sup
S ∈ Cp − {0}

1 ≤ i ≤ k, S ·DF (x) 6= 0

‖S · ∂f
∂yi
‖

‖S ·DF (x)‖

because ‖u‖ = ‖S ·DF (x)‖, and ‖v‖ = 1.

So Verdier’s condition W becomes:

sup
S ∈ Cp

1 ≤ i ≤ k

‖S · ∂f
∂yi
‖ ≤ C‖z‖ ‖S ·DF (x)‖ .

Since the functions are analytic and the inequality holds on a Z-open set of X, we can assume it
holds on a neighborhood of the origin.

Now consider the integral closure condition, ∂F
∂yl
∈ mY JM(F ) for 1 ≤ l ≤ k. Using Corollary 2.5,

we have ∂F
∂yl
∈ mY JM(F ) for 1 ≤ l ≤ k if and only if

sup
S ∈ Cp

1 ≤ i ≤ k

‖S · ∂f
∂yi
‖ ≤ C sup

1≤i≤n
‖ziS ·DF (x)‖ .

But this is easily seen to be equivalent to the previous inequality.

This last result shows that Verdier’s condition W is exactly the geometric meaning of the ideal sheaf
induced by the ∂f

∂yi
being in the integral closure of the ideal sheaf induced by mY JM(X) on X ×Pp−1.

In the next section we will see how to describe and control equisingularity conditions using multi-
plicity of ideals and modules.

3 Multiplicities, Integral closure and the Multiplicity-Polar Theorem

The multiplicity of an ideal or module or pair of modules is one of the most important invariants we
can associate to an m-primary module. It is intimately connected with integral closure. It has both
a length theoretic definition and intersection theoretic definition. We give the definition in terms of
length first, for ideals, and submodules of a free module. Denote the length of a module M by l(M).

Theorem/Definition 3.1. (Buchsbaum-Rim [3]) Suppose M ⊂ F , M,F both A-modules, F free of
rank p, A a Noetherian local ring of dimension d, F/M of finite length, F = A[T1, . . . , Tp], R(M) ⊂ F ,
then

λ(n) = l(Fn/Mn) is eventually a polynomial P (M,F ) of degree d+p-1.

Writing the leading coefficient of P (M,F ) as e(M)/(d + p− 1)!, then we define e(M) as the mul-
tiplicity of M .

It is possible to compute simple ideal examples by hand as we show:

Example 3.2. Let M = I = (x2, xy, y2) ⊂ O2. Then e(M) = 4.



We have p = 1, F = O2, and we work with F = O2[T1]. (Notice that ProjanF = C2.)

Now Mn = InT n = m2n
2 T

n, so

l(Fn/Mn) = l(O2/m
2n) = (2n)(2n+ 1)/2 = 4n2/2! + (l.o.t.)

So e(M) = 4.

Problem 3.3. Let M = I = (x2, y2) ⊂ O2. Show e(M) = 4. (Hint: Try to show that the terms that
are missing in this problem due to the missing xy term, grow only linearly with n, so the leading term
of the polynomial is the same.)

It is possible to do the very simplest module examples by hand easily as well.

Problem 3.4. Let M = m2O2
2. Show e(M) = 3.

The next problem is harder–try to use the same strategy as in Problem 3.3.

Problem 3.5. Let [M ] =

[
x y 0
0 x y

]
. Show e(M) = 3.

If OXd,x is Cohen-Macaulay, and M has d + p − 1 generators where M ⊂ F p, then there is a
useful relation between M and its ideal of maximal minors and the multiplicity of both of them. The
multiplicity of M is the colength of M , and is also the colength of the ideal of maximal minors, by
some theorems of Buchsbaum and Rim [3], 2.4 p.207, 4.3 and 4.5 p.223. A proof of this theorem in the
context of analytic geometry using the Multiplicity Polar theorem is given in [14]. Using this result,
it is easy to do Problem 3.5.

Challenge Problem 3.6. Buchsbaum and Rim showed e(M) = l(F p/M), if M has d+p−1 generators,
F a module over a Cohen-Macaulay ring. What is a generalization of this to e(M,N)? (If M and N
are ideals there is something along these lines in [13] Theorem 2.3.)

An important theorem both for computational and theoretical purposes was proved by Rees in the
ideal case. A proof of a generalization to modules appears in [31]

Theorem 3.7. Suppose M ⊂ N are m primary submodules of F p, and M = N . Then e(M) = e(N).
Suppose further that OX,x is equidimensional, then e(M) = e(N) implies M = N

Several generalizations of this result exist: Kleiman and Thorup [[31], (6.8)(b)] proved a similar
result in which F p is replaced by an arbitrary finitely generated module whose support is equidi-
mensional; they also proved an additivity result in Theorem (6.7b)(i) of [31] for the three pairs of
modules arising from three nested modules. Generalizations also exist where the multiplicity is not
defined. Gaffney and Gassler did the case of ideals [19], and Gaffney for modules [12], while Ulrich
and Valadoshti have an approach using the epsilon multiplicity.

For computational purposes, this is coupled with another result–given any M ⊂ F p, M a module
over a local ring of dimension d, there exists a submodule R of M with d+ p− 1 generators such that
M = R. Such an R is called a reduction of M .

So if OXd,x is Cohen-Macaulay, we can try to find a reduction R of M with the right number of
generators d+ p− 1, then calculate the length of F/R. (This length is also called the colength of R.)
Here is a very simple example.

Problem 3.8. Suppose I is any ideal in mn
2O2 which contains xn, yn. Then e(I) = n2.

Now we want to give an intersection theoretic definition of the multiplicity. This definition applies
to pairs of modules as well.

The next diagram shows the spaces that come into the definition.



BM(ProjanR(N)) ProjanR(N)

ProjanR(M) X

πM

πN

πXN

πXM

On the blow up BM(ProjanR(N)) we have two tautological bundles. One is the pullback of the
bundle on ProjanR(N). The other comes from ProjanR(M). Denote the corresponding Chern classes
by cM and cN , and denote the exceptional divisor by DM,N . Suppose the generic rank of N (and hence
of M) is g.

Then the multiplicity of a pair of modules M,N is:

e(M,N) =
∑d+g−2

j=0

∫
DM,N · cd+g−2−j

M · cjN .

Kleiman and Thorup show that this multiplicity is well defined at x ∈ X as long as M = N on a
deleted neighborhood of x. This condition implies that DM,N lies in the fiber over x, hence is compact.
Notice that when N = F and M has finite colength in F then e(M,N) is the Buchsbaum-Rim
multiplicity e(M,OpX,x).

Kleiman and Thorup also showed that e(M,N) vanishes if and only if M and N have the same
integral closure, provided the support of N is equidimensional. ([31], (6.3)(ii).)

Remark 3.9. We have seen that there is a map from ProjanR(N) \ V (F) → ProjanR(M). The
diagram used in the definition of e(M,N) can be used to make this more precise. Namely, the comple-
ment of πMDM,N is the largest open subset V of ProjanR(M) such that the map π−1

M V \DM,N → V
is finite. Plainly, πN is an isomorphism over the complement U of V (F), and π−1

N U contains π−1
M V .

Let’s re-calculate two examples using this definition.

Example 3.10. Let M = I = (x2, xy, y2) ⊂ O2. Then e(M) = 4.

Here d = 2, p = g = 1, ProjanR(N) = C2, Projan(M) = BI(C2) = BM(ProjanR(N)), and
Projan(M) ⊂ C2 × P1. So the only term we need to calculate is

∫
DM,N · cM . We can calculate this

term as follows: Intersect BI(C2) with C2 ×H, H a generic hyperplane in P1, which represents c(M).
Project this curve to C2, and calculate the order of I on the curve. Projecting the curve to C2 amounts
to setting a generic combination of the generators to zero, and looking at the curve obtained, removing
any components in V (I). In this case a generic curve is x2 − ay2 = 0, a 6= 0. This consists of two
branches (x− y = 0 and x + y = 0 if a = 1) and the colength of the ideal on each branch is 2 so the
multiplicity is 2 + 2 = 4.

Example 3.11. Let [M ] =

[
x y 0
0 x y

]
. Show e(M) = 3.

Here d = 2, p = g = 2, N = O2
2, ProjanR(N) = C2 × P1, ProjanR(M) ⊂ C2 × P2, dimension of

BM(ProjanR(N)) is 3. So we need to calculate
∫
DM,N · c2

M ,
∫
DM,N · cM · cN (Notice that c2

N = 0,
since we are working on ProjanR(N) = C2 × P1.) Now we have two choices: as before we intersect
a representative of each class with the blow-up then push down to X, then see what the multiplicity
of M is on each curve. Or, we can push down to ProjanR(N) and evaluate M on each curve. (For
details of how this approach works, the reader should consult [11] Theorem 3.1 and the two examples
which follow.)

Taking the second route, projecting the intersection of the blow-up with a hyperplane from C2×P1

and a hyperplane from C2 × P2, is a curve on C2 × P1, defined by a linear relation T1 = aT2, and



by setting one of the elements of M restricted to this set to zero. The restriction of M to the locus
T1 = aT2 is the ideal generated by the entries of the linear combination of the first row and a times
the second row from the original matrix. A generic curve is given by setting x + ay = 0, and the
multiplicity of M on this curve is 1. So,

∫
DM,N · cM · cN = 1.

Projecting the intersection of the blow-up with two hyperplanes from C2 × P2, amounts to setting
two generic elements of M to zero and removing any components of V (M). Setting xT1 + yT2 and
yT1 + xT2 = 0 gives two curves. One curve is x = y, T1 = 1 = −T2 and the other curve is x = −y,
T1 = 1 = T2.

The restriction of M to the first curve is x so the multiplicity is 1; as it is on the second curve as
well, for a total of 3.

Notice that in the last example 3 = e(M) 6= e(J(M)) = 4. (J(M) is the ideal of maximal order
non-vanishing minors, and is (x2, xy, y2) in this case.) But,

Problem 3.12. Suppose M ⊂ N ⊂ F are m primary OX,x modules, X, x equidimensional. Show that
e(M) = e(N) if and only if e(J(M)) = e(J(N)).

There are examples though, where there is a family of ICIS singularities where e(JM(Xy)) is
independent of y, but e(J(JM(Xy))) is not. In the example due to Henry and Merle, the embedding
dimension of the singularity changes at y = 0–the singularity goes from being codimension 2 to being
codimension 1, because one of the defining equations is no longer singular off the origin. Is this the
only way for the connection between the two invariants to break?

Challenge Problem 3.13. Give a geometric characterization of when e(JM(Xy)) is independent of
y, but e(J(JM(Xy))) is not.

This problem is connected with the difference between using the conormal modification to study
equisingularity conditions and using the Nash modification, which is why it is interesting. In the ICIS
case a difference in the value of the multiplicity between the generic point y and the origin implies
there is a jump in the dimension of the fiber of the exceptional divisor over the origin. So if the value
of e(JM(Xy)) is independent of y, but e(J(JM(Xy))) is not, then the set of limiting tangent planes
has a jump in dimension at the origin, but the set of limiting tangent hyperplanes does not.

Reading In section 3 of [11] these ideas are developed further. It also contains the example due to
Henry and Merle mentioned above.

There is an important case where it is easy to calculate the multiplicity of the pair. Suppose we
are given OX modules M ⊂ N ⊂ F , where F is free, X has dimension 1, and e(M,N) is defined. We
want a procedure to calculate e(M,N). The first step is to find a normalization X̃, n of the curve.
Then we can use the following proposition.

Proposition 3.14. Suppose X is a curve singularity, then e(M,N) = e(n∗(M), n∗(N)).

Proof. This is a corollary of theorem 5.1 of [29].

We’ll illustrate the rest of the procedure with an example taken from [22]. The procedure is also
described in [29].

The curves we consider are the Xl, defined by the minors of

Fl =

 z x
y z
xl y

 .



We assume l − 1 is not divisible by 3. With this assumption we have a normalization given by
(C, nl) where nl(t) = (t3, t2l+1, tl+2). The assumption on l means that the exponents on the first and
last terms in the formula for n are relatively prime. The form of n is a reflection of the fact that Xl

is weighted homogeneous with weights (3, 2l + 1, l + 2).

In this example the module N is F ∗l (JM(Σ2)) where Σ2 is the linear maps of rank< 2, and we view
Fl as map from C3 → Hom(C2,C3). Then M = JM(Xl).

The next step is to find a minimal set of generators for n∗l (N) and n∗l (M). Pulling back the
generators of JM(Σ2) using Fl ◦ nl, we get:

n∗l (N) =

 tl+2 −t3 0 −t2l+1 tl+2 0
0 t2l+1 −tl+2 0 −t3l t2l+1

t2l+1 0 −t3 −t3l 0 tl+2

 .
As this matrix has generic rank 2, n∗l (N) can be generated freely by 2 generators since we are

working over O1, so a matrix of generators RN of n∗l (N) with a minimal number of columns is

RN =

−t3 0
t2l+1 −tl+2

0 −t3

 .
A calculation shows that n∗l (JM(X)) is generated by the columns of:

RJM =

 −t3 2tl+2

2t2l+1 −t3l
tl+2 t2l+1

 .
Note that

RJM = RN

[
1 −2tl−1

−tl−1 −t2l−2

]
.

Denote the submodule of O2
1 whose matrix of generators is the 2 × 2 matrix in the last line by

K. Since n∗l (N) is freely generated, it is isomorphic to O2
1. The isomorphism carries the pair

(n∗l (JM(X)), n∗l (N)) to (K,O2
1). Then e(n∗l (JM(X)), n∗l (N)) = e(K,O2

1). SinceO1 is Cohen-Macaulay,
the multiplicity of the second pair is the colength of the determinant of the matrix of generators of K,
which is 2l − 2.

Polar Varieties of a Module

Intuitively, the polar varieties of a module measure the “curvature” of ProjanR(M), and we have
encountered them in the examples of the previous paragraph. As we shall see, the projection of
BM(ProjanR(N)) · c2

M to C2, studied in Example 3.11 is the polar curve of M .

The polar variety of codimension l of M in X, denoted Γl(M), is constructed by intersecting
ProjanR(M) with X×Hg+l−1 where Hg+l−1 is a general plane of codimension g+l−1, then projecting
to X.

So, in the setting of Example 3.11, g = 2, and g + l − 1 = 2 + 1 − 1 = 2, and the projection of
BM(ProjanR(N)) · c2

M to ProjanR(M) is the intersection of C2 ×H2 with ProjanR(M). Thus the
projection of BM(ProjanR(N)) · c2

M to C2 is Γ1(M).

The polar varieties of M can be constructed by working only on X. The plane Hg+l−1 consists
of all hyperplanes containing a fixed plane HK of dimension g + l − 1. By multiplying the matrix of
generators of M by a basis of HK we obtain a submodule of M denoted MH .



Proposition 3.15. In this set-up the polar variety of codimension l consists of the closure in X of
the set of points where the rank of MH is less than g, and the rank of M is g.

Proof. Since Hg+l−1 is generic, the general point of ProjanR(M) ∩X ×Hg+l−1 lies over points where
the rank of M is g. Choose coordinates so that a basis for HK consists of the last g + l − 1 elements
of the standard basis of Cj, j the number of generators of M . We can find v such that v[MH ] = 0 but
v[M ] 6= 0 if and only if we are at a point where the rank of MH < g. The existence of v is equivalent
to being able to find a combination of the rows of [M ], such that the last g + l− 1 entries are 0. This
row is a hyperplane which lies in Hg+l−1.

Teissier ([39], [40]) defined the polar varieties of an analytic germ (Xd, x) ⊂ Cn of codimension l as
follows: take a generic projection π of Xd → Cd−l+1, and take the closure of the critical points of the
restriction of the projection to the smooth points of X. Using the last proposition, it is easy to see
that these polar varieties are the polar varieties of the Jacobian module of X.

For, given (Xd, x) ⊂ Cn, the generic rank g of the Jacobian module of X is n− d. The kernel of a
generic projection to Cd−l+1 has dimension n − d + l − 1 = g + l − 1. Let the fixed plane HK in the
previous proposition be the kernel of π. Then the rank of MH is less than maximal at a smooth point
of X if and only if the tangent space of X has larger than expected intersection with the kernel of π.
Thus, a tangent hyperplane of X contains HK at a smooth point of X if and only if x is a critical
point for the restriction of the projection to X at x. Thus the two notions of polar variety coincide.

If M is an ideal and we are working on X, then MH is a sheaf of ideals and the polar varieties are
the closure of the set defined by this sheaf on the complement of V (M).

Problem 3.16. Given M ⊂ N ⊂ OpX,x, M and N both OX modules, M induces an ideal sheaf on
ProjanR(N), and we can define the polar varieties of this ideal sheaf. (To do this we must work on
the fiber of ProjanR(N) over x.) Show that the projection of the polar of dimension d defined in this
way to X is Γd(M).

Thus, there are 4 different settings for studying the polar varieties. It is often useful in proofs to
move between them.

There is a special case which will be important to us. The diagram below represents the smoothing
of an isolated singularity.

Xd(0) ⊂ X d+1 ⊂ Y × CN ⊃ X (y)

0 ∈ Y = C ⊃ y 6= 0

pY πY

Let M = JMz(X ), Then Γd(X ) by the previous proposition is defined by selecting N − 1 generic
generators of JMz(X ), and looking to see where they have less than maximal rank. Assume coordinates
chosen so that the first N − 1 columns of [JM(X )] are generic. Then the points where the polar
intersects X (y) are the critical points of zN restricted to X (y). The number of such points is the
number of sheets of Γd(X ) over Y is the multiplicity of Γd(X ) over Y at the origin. If the smoothing
is unique up to diffeomorphism, then the invariant is denoted md(X). It is clear that the number of
critical points of a generic linear form on a smoothing of X is important to the topology of X (y), so
this number is an important invariant of X.

By construction, the existence of a polar variety of M at x ∈ X is tied to the dimension of the fiber
of ProjanR(M) over x.



Problem 3.17. Suppose Xd, x equidimensional and M has the same generic rank g on each component
of X at x. Show that Γl(M,x) is non-empty if and only if the dimension of the fiber of ProjanR(M)
over x is greater than or equal to l + g − 1.

There is a strong connection between polar varieties and integral closure thanks to an important
result of Kleiman and Thorup [31], [32], which we next discuss. The following theorem ties the
dimension of this fiber to integral closure conditions.

Set-up: X the germ of a reduced analytic space of pure dimension d, F a free OX-module, M ⊂
N ⊂ F two nested submodules with M 6= N , M and N are generically equal and free of rank e. Set
r := d + e − 1. Set C := Projan(R(M)) where R(M) ⊂ SymF is the subalgebra induced by M in
the symmetric algebra on F . Let c : C → X denote the structure map. Let W be the closed set in X
where N is not integral over M , and set E := c−1W .

Theorem 3.18. (Kleiman-Thorup, [31],[32]) If N is not integral over M , then E has dimension r−1,
the maximum possible.

Proof. Since this theorem is so important to us, we give a concise version, due to Kleiman ([30]), of
the proof that appears in [32].

Given an element h ∈ N that’s not integral over M , let H be the module generated by h and
M . Now we use the notation of the diagram used in the definition of e(M,N). We have DM,H is
nonempty by Remark 3.9, so of dimension r − 1 where r := dimProjanR(M). But πH embeds DM,H

in ProjanR(M) because H/M is cyclic. Moreover, 3.9 implies that N is integral over M locally off
πMDM,N ; so H is too; so 3.9 implies that πMDM,N contains πMDH,N . Plainly, πMDH,N lies in E. Thus
dim E = r − 1.

A recent proof in a more general setting appears in [34].

We give an example the usefulness of this Theorem by giving a simple proof of one direction of a
theorem of Teissier describing Whitney equisingularity.

Set-up: Suppose Y k, 0 ⊂ Xd+k, 0, Y k smooth, y coordinates on Y , I(Y ) = mY . Set M = mY JM(X),

N = M + C{∂f
∂y
}, then Projan(R(M)) = BmY

(C(X)), M = N off Y .

Let E denote the exceptional divisor of BmY
(C(X)).

Theorem 3.19. (Teissier, [39]) If the fibers of E, the exceptional divisor of BmY
(C(X)) over Y , have

the same dimension, then the Whitney conditions hold along Y .

Proof. If the Whitney conditions fail along Y , they do so on a proper closed subset S ⊂ Y . Then S is
the set where M 6= N ([9]). By the Kleiman-Thorup theorem there must be a component of E over
S, so the fibers of E have larger dimension over points in S than over the generic point of Y .

For the ICIS case we can use the machinery of multiplicities, together with the Kleiman-Thorup
theorem to get criteria for a family of sets to be Whitney equisingular, in which the criteria depend
only on the members of the family, not the total space. We describe how this developed.

The first theorem is a generalization of a result of Teissier, who used it in conjunction with hy-
persurfaces. This theorem is useful in showing that if invariants are independent of parameter then
equisingularity conditions hold.

Theorem 3.20. (Principle of Specialization of Integral Dependence) Assume that X is equidimen-
sional, and that y 7→ e(y) is constant on Y k. Let h be a section of a free OX module E whose image
in E(y) is integrally dependent on the image of M(y) for all y in a dense Zariski open subset of Y .
Then h is integrally dependent on M .



Proof. Cf. Theorem 1.8 [21].

The proof of the PSID proceeds by showing that the constancy of the multiplicity means that
M has a reduction MR which is generated by dim(X(y)) + p − 1 generators, which is the minimum
possible if e(M(y)) is well defined for all y. To do this, first we find such an MR whose restriction
MR(0) to X(0) is a reduction of M restricted to X(0), so e(MR(0)) = e(M(0)) by Theorem 3.7.
Then the uppersemicontinuity of the multiplicity ([21], 1.1 p547), implies e(MR(0)) ≥ e(MR(y)), while
MR(y) ⊂M(y) implies e(MR(y)) ≥ e(M(y)). This gives us the inequality:

e(M(0)) = e(MR(0)) ≥ e(MR(y)) ≥ e(M(y)) = e(M(0)).

Thus, by Theorem 3.7, MR(y) is a reduction of M(y) for all y.

Now replace M by the submodule generated by MR and g, where g may be h or any element of
M not in MR. A lemma ([21] 1.2, p 548) ) shows that if the set of points where g fiberwise is not
integrally dependent on MR is a proper Zariski closed subset of Y , then the set of points where g is
not integrally dependent on MR is also a proper Zariski closed subset W of Y . This implies that MR

is a reduction of (M,h) off a Zariski closed set of Y as this is true fiber wise.

Now, the dimension of the fiber of Projan(R(MR)) over our base point x0 ∈ X is at most
dim(X(y)) + p − 2, which is one less than the number of generators. Now the inverse image of
W in Projan(R(MR)) must have dimension at most dim(X(y)) + p− 2 + k − 1. Then since

(dim(X(y)) + p− 2 + k − 1) ≤ (dim(X(y)) + k) + (p− 1)− 2 = ((dim(X) + p− 1)− 2,

the Kleiman-Thorup theorem then shows that M̄R = M̄ , which gives the result.

In order to show that the equisingularity condition implied that the invariants were independent of
y more ideas are necessary. These are discussed in the proof of the next theorem.

Theorem 3.21. Suppose (Xd+k, 0) ⊂ (Cn+k, 0) is a complete intersection, X = F−1(0), F : Cn+k →
Cp, Y a smooth subset of X, coordinates chosen so that Ck×0 = Y . Then the following are equivalent:

i) the pair (X − Y, Y ) satisfies W at 0;

ii)The sets X(y) are complete intersections with isolated singularities and e(myJM(Xy)) is independent
of y for all y ∈ Y near 0.

Proof. For the proof that ii) implies i), the condition on e(myJM(Xy)) implies that the singularities
do not split, so that X − Y is smooth. Since the integral closure condition is a generic condition, the
PSID applies.

For the proof that i) implies ii) the proof is more complicated. An expansion formula shows that
e(myJM(Xy)) is a sum of multiplicities. Each multiplicity that appears is the sum of two Milnor
numbers of plane sections of the ICIS X(y). Since Whitney equisingularity of X implies the Whitney
equisingularity of the plane sections of X, and the Milnor numbers of the sections are topological
invariants, the multiplicities, and hence their sum is invariant as well.

With this result you can see that the Whitney conditions imply in the ICIS case, that the fiber
of BmY

(C(X)), the blow-up of the conormal modification along Y , is equidimensional over Y . For
the Whitney conditions imply that the multiplicity of mY JM(X(y)) along Y is constant. Then the
technique of proof used in the Principle of Specialization implies that we can pick d+ p− 1 elements
of mY JM(X(0)) which generate a reduction N first of mY JM(X(0)), then of mY JM(X). This
implies that there exists a finite map from BmY

(C(X)) to Projan(R(N)). Now since Projan(R(N)) ⊂



X × Pd+p−2, the fiber dimension of BmY
(C(X)) over 0 ∈ X is less than or equal to d+ p− 2 = n− 2

which is the minimum possible.

For an ICIS X, we use the multiplicity of mY JM(X) to control the Whitney equisingularity type.
What do we use when e(mY JM(X)) is not defined? Since e(mY JM(X)) is defined only when JM(X)
has finite codimension in OpX , it is only defined for ICIS.

Looking at the ideas relating e(mY JM(X)) to the Whitney conditions, though the connections
are beautiful, the proofs that Whitney implies the constancy of the multiplicities seem unnecessarily
round about. The Whitney conditions themselves are described by the behavior of the exceptional
divisor of BmY

(C(X)). Is there a direct link between e(mY JM(X)) and the exceptional divisor, so
that it would not be necessary to go through topology to show that Whitney implies the constancy of
e(mY JM(X))?

To answer the first question, start with thinking about the pair of modules (JM(X),OpX). The
module JM(X) can be viewed as the module of infinitesimal, first order trivial deformations of X.
(Trivial with respect to biholomorphic equivalences of Cn.) The module OpX is then the module of all
infinitesimal, first order deformations of X since we can deform the equations of X freely, and get a
family of ICIS. It is known that if X has an isolated singularity, then again the codimension of JM(X)
inside the module N(X) of all infinitesimal, first order deformations of X is finite. This suggests using
e(JM(X), N(X)).

However, two problems surface. We want specialization of N from the total space of a family to
the fibers. This is necessary if the results are to depend only on the fibers of the family and not on the
total space. This will be true, provided any first order linear infinitesimal deformation of a space lifts
to a deformation of the family. However this is clearly false, if the base space of the versal deformation
space has components. If the base space of the verbal deformation space is smooth for example, then
the specialization property is true.

Another problem enters because N(X) may have curvature. Here we are making an analogy between
N and JM(X). Moonen ([27]) has shown that the multiplicities of the polar varieties of X, x are related
to the curvature of X at x. (In the real case see also [6]) This curvature then is related to the limiting
tangent hyperplanes of X at x. Since the polar varieties of N are related to limiting hyperplanes
defined by row vectors of a matrix of generators of N , it is reasonable to call the phenomena picked
up by polar multiplicities of N as the curvature of N . How this curvature enters into the invariants
we want will be a main theme of the next section.

In the next section we give also an example which shows the multiplicity of the pair may be zero,
but the curvature contribution of N gives a non-zero invariant.

Since the Whitney conditions are controlled by the dimension of the fiber of the exceptional divisor
of BmY

(C(X )), and the dimension of the fibers are detected by the presence of the polar varieties of
the relative Jacobian module, it is reasonable to look for a connection between invariants associated
with integral closure and those associated with polar varieties.

An approach for linking the behavior of the multiplicity of an ideal in a family to the degree of
the exceptional divisor is given by Teissier in [39, p. 345]. We include an excerpt from this reference
where this idea is mentioned.



Here is how we can understand Teissier’s formula. The fiber of the exceptional divisor over 0 ∈ Xd+1

is a projective variety so it has a degree. When we intersect this variety with a linear space of
complementary dimension, on the one hand, the number of points we get is the degree of the variety,
on the other, because intersecting BI(X) with this linear space defines the polar curve of I, it is the
number of points in the polar curve over a generic t value. Call this number md(I,X). Now one way
to define the polar curve is to pick d generic elements of I, chosen so that they define a reduction of
I(0) and are a reduction of I on the total space over D − 0, and see where they are zero. Call this
ideal J . By construction the points where they are zero outside of V (I), will be a Z-open and dense

set of the polar curve, and at points of V (I), I(y) = J(y) and so e(I(y)) = e(J(y)) at such points.
Since J is generated by d elements, a lemma shows that e(J(y)) is independent of y. So

degDvert = md(I,X) = e(J · OX(0))− e(J · OX(y)) = e(I · OX(0))− e(I · OX(y)).

If we extend this approach to pairs of modules we find that the polar variety of N enters as well as
the polar variety for M .

Set-up: M ⊂ N ⊂ F , a free OX module, X equidimensional, a family of sets over Y , with equidimen-
sional fibers, Y smooth, M = N off a set C of dimension k which is finite over Y .

Let ∆(e(M,N)) = e(M(0), N(0),OX(0), 0)− e(M(y), N(y),OX(y), (y, x)) be the change in the mul-
tiplicity of the pair (M,N) as the parameter changes from y to 0.

Theorem 3.22. (Multiplicity Polar Theorem, [10], [11]):

∆(e(M,N)) = multyΓd(M)−multyΓd(N)

Many applications of this theorem can be found in: [11], [13], [14], [22], [20].

To show its power we give a simple proof of Theorem 3.21 which links e(JM(Xy)) and the Whitney
conditions. The proof that that ii) implies i) avoids the use of topology.

Proof. of 3.21: i) implies ii) The Whitney conditions imply that the fiber of D ⊂ BmY
(C(X)), the

exceptional divisor is equidimensional over Y . Because the dimension of the fiber is small, there is no
polar variety of codimension d for mY JM(X). Since OpX has no polar varieties, the Multiplicity Polar
Theorem implies that e(mJM(Xy)) is independent of y.

ii) implies i) The independence of e(mJM(Xy)) from y implies that there is no polar variety of
codimension d for mY JM(X), and hence the fiber of D over Y k is equidimensional. At this point we
apply the theorem of Kleiman-Thorup (3.18). We know that JMY (X), the submodule generated by



the partial derivatives taken with respect to coordinates on Y , is in the integral closure of mY JM(X)
at points in a Z-open subset of Y . Since the dimension of the set of points of Projan(mY JM(X)) over
the set of points where the integral closure condition does not hold is at most (k − 1) + (d+ g − 2) <
(d+k) + (g−1)−1, it follows that JMY (X) is in the integral closure of mY JM(X) at all points of Y .

In the next part, we examine an important class of singularities for which the module N of first
order deformations does specialize as we desire.

Determinantal singularities

We begin with F , a (n + k, n) matrix, with entries in Oq; we view F as a map from Cq →
Hom(Cn,Cn+k). Let Σr denote elements of Hom(Cn,Cn+k) of rank less than r. Let Ir be the ideal in
On2+nk generated by the minors of size r of elements of Hom(Cn,Cn+k). It is easy to check that the
codimension of Σr in Hom(Cn,Cn+k) is (n− r + 1)(n + k − r + 1). The elements of Hom(Cn,Cn+k)
of rank r, 0 ≤ r ≤ n give a stratification of Hom(Cn,Cn+k) which we call the rank stratification.

Assume F is transverse to the rank stratification of Hom(Cn,Cn+k) on Cq − 0. Let Σr(F ) :=
V (F ∗(Ir)), then F ∗(Ir) is generated by the minors of size r of F . Σr(F ) is determinantal i.e. codim
Σr(F ) =codim Σr. If q < (n − r + 2)(n + k − r + 2) then Σr(F ) has a smoothing, because when we
deform F so that it is transverse to the rank stratification there will be no points where the rank< r−1.

We fix the class of deformations and fix a unique smoothing by only considering deformations of
Σr(F ) which come from deformations of the entries of F . As we shall see, the geometric meaning of
the invariants we develop is tied to the topology of the smoothing.

We may freely vary the entries of F and deformations of the entries of F induce deformations of
the generators of F ∗(Ir); first order deformations define the module N(XF ). Generators of N(XF ) are
tuples of minors of F of size r − 1. If F and r are understood we simply write N(X).

Properties of N(X)

The operation of forming N(X) has some nice properties.

• N is universal. If the entries of F are coordinates on Hom(Cn,Cn+k) denote N(X) by NU . Then
for any M , N(XF ) = F ∗NU .

• NU is stable; NU = JM(Σr). Coupled with universality this implies N(XF ) = F ∗JM(Σr), which
explains why the generators of N(XF ) are tuples of minors of F of size r − 1. (We say that the
first order linear infinitesimal deformations are stable if they are trivial. Here the first order linear
trivial infinitesimal deformations are deformations are JM(Σr).)

• Stability implies the polar varieties of Σr are the polar varieties of NU .

• Universality implies Γi(N(XF )) = F ∗Γi(NU).

• Together they imply if F̃ defines a smoothing X̃ of Xd
F , then

multCΓd(N(X̃F̃ )) = F (Cq) · Γd(Σ).

In general, the intersection number F (Cq)·Γd(Σ) is defined as follows. Work on Cq×Hom(Cn,Cn+k)
and consider the intersection of the graph of F with Cq × Γd(Σ), where, since Γd(Σ) is the polar
variety of codimension d in Γd(Σ), the graph of F and Cq×Γd(Σ) have complementary dimension
in Cq ×Hom(Cn,Cn+k). If F is one to one, then the intersection number is that of the image of
F with Γd(Σ) in Hom(Cn,Cn+k).



If r = n which is the case that Ir is the ideal of maximal minors, F (Cq) ·Γd(Σ) is computed in terms of
the entries of F in [22]. We give a brief introduction to the formula in this paper in order to continue
the study of curve singularities begun at the end of the section on multiplicities. This will also show
why singularities defined by maximal minors are easier to study.

To study the polar varieties of F ∗JM(Σn), we need to understand Projan(R(F ∗JM(Σn))). At a
smooth point M of XF , consider pairs (l1, l2) where l1 ∈ kerM t, l2 ∈ kerM . Here l2 ∈ Pn−1 is unique,
while the set of l1 ∈ Pn+k−1 has dimension k. Take the closure of this set in XF×Pn+k−1×Pn−1. This is
the M -transform of X, denoted XM . In [22], this is shown to be isomorphic to Projan(R(F ∗JM(Σn))).
The isomorphism is defined by

Φ(x, (T1, . . . , Tn+k), (S1, . . . , Sn)) = (x, T · S),

where T · S is an element of PHom(n, n+ k).

If F̃ is defines a smoothing X of Xd, then we want to calculate the degree over the base C of the
polar curve of F̃ ∗JM(Σn), denoted md(F

∗JM(Σn)). Ideally, we would want to find the equations of
the polar variety of Σn of complementary dimension to q, pull them back to X and take degree. This
seems difficult. Instead, we will define “mixed polars” for which we can find equations, and which will
define Cohen-Macaulay germs. To define these we look again at the construction of the polar varieties
of Σn and their pull backs–the polars of F̃ ∗JM(Σn).

First, denote the fiber over the origin in X of ProjanR(F̃ ∗JM(Σn)) by E. The generic rank of
F̃ ∗JM(Σn) is the same as the generic rank of JMz(X ) which is the k+1, the codimension of the generic
fiber of X . Then the polar curve is gotten by intersecting ProjanR(F̃ ∗JM(Σn)) with d+k hyperplanes
and projecting to X . The degree of the polar curve over C is just E ·hd+k in PHom(n, n+k), where h is
the hyperplane class of PHom(n, n+ k). Now we use the isomorphism between ProjanR(F̃ ∗JM(Σn))
and XM . Denote the hyperplane classes on X × Pn−1 and X × Pn+k−1 by h2 and h1 respectively. As
classes, the pullback of h to X × Pn+k−1 × Pn−1 by the Veronese V is h1 + h2. So,

md(F
∗JM(Σn)) =

∑d+k

i=0

(
d+ k

i

)
hi1h

d+k−i
2 · E.

The simple description we have of C(Σn) which permits the decomposition of the last formula seems
to be unique to r = n. This decomposition is the key to being able to write md(F

∗JM(Σn)) as the
alternating sum of colengths of ideals defined using the entries of F .

Define Γi,j(F̃
∗JM(Σn)) to be πX (XM ∩ hi1h

j
2). We call these the mixed polars of type (i, j) of

F̃ ∗JM(Σn). Denote the degree of this mixed polar over C by hi1h
j
2.Then

md(F
∗JM(Σn)) =

∑d+k

i=0

(
d+ k

i

)
hi1h

d+k−i
2 .

It is shown in [22] that the mixed polars are related to certain determinantal varieties, and that the
hi1h

j
2 are the alternating sum of degrees of these determinantal varieties. These degrees are just the

lengths of the rings gotten by modding out the local ring of the associated determinantal variety by
the coordinate on C. In turn, these are just the lengths of the pullbacks by F of the rings defining the
corresponding varieties on Σn. So, these numbers depend only on the component functions of F .

Now we consider again the determinantal space curves Xl defined by F−1
Xl

(Σ2),

FXl
=

 z x
y z
xl y

 .



We have n = 2, k = 1, d = 1, so

m1(F ∗Xl
JM(Σn)) = h2

1 + 2h1h2 + h2
2.

The h2
2 term is zero, because we are working on Xl × P2 × P1, and the square of the hyperplane

class on P1 is zero.

To calculate h2
1, note that if we choose (1, 0, 0) as the point of intersection of our two hyperplanes

on P2, the ideal of Γ2,0 for this choice on Hom(2, 3), is (a1,1, a1,2, a2,1a3,2 − a2,2a3,1), for these are the
points of Σ2 for which (1, 0, 0) is in the kernel of M t, M ∈ Hom(2, 3). Pulling this ideal back by F ∗Xl

gives (x, z, y2), which has colength 2, so h2
1 = 2.

To compute h1h2, choose (0, 1) as the point on P1 defined by the hyperplane, and let (0, 0, 1) be
the hyperplane on P2. So, we are looking for M such that (0, 1) is in the kernel of M and some line
defined by (a, b, 0) is in the kernel of M t. The ideal that defines this set is (a2,1, a2,2, a2,3). This is
already determinantal, so our procedure simplifies in this case. We get h1h2 is the colength of (x, y, z)
which is 1, so m1(F ∗Xl

JM(Σn)) = 2 + 2(1) + 0 = 4 for all l.

Putting together our previous work, we see that if l = 1, then e(JM(X1), F ∗1 (JM(Σ2))) = 0, but
e(JM(X1), F ∗1 (JM(Σ2))) + m1(F ∗1 (JM(Σ2))) = 3. In fact, for isolated space curve singularities, the
invariant e(JM(XF ), F ∗(JM(Σk))) + m1(F ∗1 (JM(Σk))) is never zero, since the polar of codimension
1 of Σr is non-empty for r > 1. (If r = 1, then F defines an ICIS, and e(JM(XF ), F ∗(JM(Σ1))) =
e(JM(XF )) 6= 0.)

It is important to understand when an invariant is zero. The next proposition gives a geometric
criterion for when e(JM(XF ), F ∗(JM(Y )) = 0, and also relates this invariant to the map F .

Proposition 3.23. Suppose F : Cq, 0 → Cn, 0, (Y, 0) ⊂ Cn, Y reduced and XF defined with reduced
structure also. Then e(JM(XF ), F ∗(JM(Y ))) = 0 if and only if no limiting tangent hyperplane to Y
along the image of F contains the image of DF (0).

Proof. Let G = 0 define Y with reduced structure. By hypothesis, G ◦ F defines X with reduced
structure also. This implies that JM(XF ) ⊂ F ∗(JM(Y )), by the Chain rule. The condition that

e(JM(XF ), F ∗(JM(Y ))) = 0 is equivalent to JM(XF ) = F ∗(JM(Y )). By 2.29 this is exactly the
condition that the ideal sheaf induced by JM(XF ) on ProjanR(F ∗(JM(Y ))) is irrelevant ie. does not
vanish on the fiber of ProjanR(F ∗(JM(Y ))) over 0 ∈ XF . Since Projan(JM(Y )) is C(Y ), the fiber
of ProjanR(F ∗(JM(Y ))) over 0 is just limiting tangent hyperplanes to Y along the image of F .

The set ProjanR(F ∗(JM(Y ))) is a subset of XF ×Pn−1. By the Chain Rule we know DG(F (x)) ◦
DF (x) = D(G ◦F )(x). Now, DF (x) induces an ideal sheaf on X ×Pn−1, because F has n component
functions. If we restrict this sheaf to ProjanR(F ∗(JM(Y ))), we get the ideal sheaf induced by JM(X)
on ProjanR(F ∗(JM(Y ))), because this ideal sheaf arises from writing the generators of JM(X) in
terms of the generators of F ∗(JM(Y )), and this is exactly what the Chain Rule does for us. Denote
this sheaf by F .

The condition that this ideal sheaf vanish at a point (x,H) ∈ ProjanR(F ∗(JM(Y ))) is just that
the linear form defining H when applied to each of the generators of F give zero. For, the value of
the i-th generator,

∑n
1
∂Fj

∂zi
Tj on (x, (a1, . . . , an)) is

∑n
1
∂Fj

∂zi
(x)aj. Since the fiber over 0 is the limiting

tangent hyperplanes to Y along F at the origin the result follows.

We explore the case of three lines in C3 (l = 1) further. It is simpler to do this if we use the map

F =

z 0
y y
0 x

 .



For this F , XF is the coordinate axes.

Example 3.24. The fiber of ProjanR(F ∗JM(Σ2)) over 0 consists of three copies of P1, namely,0 0
0 a
0 b

,
a 0
b 0
0 0

,
a −a0 0
b −b

, (a, b) ∈ P1.

Further, the image of DF (0) is not contained in any element of the fiber of ProjanR(F ∗JM(Σ2)) over
0.

To see why these assertions are true, note that the fiber of ProjanR(F ∗JM(Σ2)) is constant over
the z axis for z 6= 0. This is because F and Σ2 are homogeneous.

We have a general result which describes the fiber of C(Σr) which we can apply here, which we now
describe.

We know that the fiber to the normal bundle to the smooth manifold Σr+1−Σr at M ∈ Σr+1−Σr,
is Hom(K(M), C(M)) where K(M) denotes the kernel of M and C(M) denotes the cokernel, which
we think of as the vectors in Cn+k which annihilate the image of M .

So up to some identifications, the fiber of C(Σr+1) at M is inside PHom(K(M), C(M)). Let Σj(M)
denote the elements of Hom(K(M), C(M)) of kernel rank j.

Let Xj denote the projective variety determined by Σr. If M ∈ Hom(Cn,Cn+k), then we denote
P(Σr(M)) by Xr(M).

Theorem 3.25. (Conormal fiber Theorem) Suppose M is in Σs, s > r. Then the fiber of the conormal
of C(Σr) at M is Xs−r(M).

Proof. See the Conormal Fiber Theorem at the end of section 2 of [22].

In the case of singularities defined by maximal minors if we know the M-modification of XF we
can compute these fibers. For example, at points on the z axis of XF , z 6= 0, we see that the fiber is
(0, a, b)× (0, 1), because (0, 1) is the kernel of F (0, 0, 1), and (0, a, b) is the kernel of F t(0, 0, 1). Then
a point of the fiber maps to 0 · 0 0 · 0

0 · a 1 · a
0 · b 1 · b


The condition that the image of DF (0) is contained in a limiting tangent hyperplane implies that

∂F
∂x
·

0 0
0 a
0 b

 = 0, ∂F
∂y
·

0 0
0 a
0 b

 = 0.

Expanding we get:0 0
0 0
0 1

 ·
0 0

0 a
0 b

 =

0 · 0 0 · 0
0 · 0 0 · a

0 1 · b

 = 0,

0 0
1 1
0 0

 ·
0 0

0 a
0 b

 =

0 · 0 0 · 0
1 · 0 1 · a

0 0 · b

 = 0.

This implies that a = b = 0; thus no element of the fiber which is a limit of tangent hyperplanes to
Σ2 along the image of the z axis in Σ2 can contain the image of DF (0).

Problem 3.26. Prove the rest of the assertions of the last example.



We can use this simple example to get some idea of the possible ways our invariants can change in
a family. Given a family of singularities {Xd

t }, with parameter t, let e(JM(Xt), F
∗
t JM(Σr), t) denote

the sum of e(JM(Xt), F
∗
t JM(Σr), x) over all x ∈ Xt; let

eΓ(M,F ∗t JM(Σr), x) = e(JM(Xt), F
∗
t JM(Σr), x) +md(F

∗
t JM(Σr), x),

and define eΓ(M,F ∗t JM(Σr), t) in a way similar to e(JM(Xt), F
∗
t JM(Σr), t).

Example 3.27. Let Ft =

 z 0
y − t y + t

0 x

 . Let Xt = XFt, then Xt for t 6= 0 consists of three lines which

intersect in two plane curve singularities–both ordinary nodes. Further e(JM(Xt), F
∗
t JM(Σ2), t) is 0

for t = 0 and 4 for t 6= 0, hence is not upper semicontinuous. The invariant eΓ(M,F ∗t JM(Σ2), t) = 4,
for all t.

The example shows that eΓ(M,F ∗t JM(Σ2), t) = 4 being independent of t does not prevent the
singularity from splitting. If we assume the parameter space is embedded in X as C× 0, and ask that
eΓ(M,F ∗t JM(Σ2), (t, 0)) is independent of t, then splitting cannot occur because eΓ(M,F ∗t JM(Σ2), t)
is upper semicontinuous, and eΓ(M,F ∗t JM(Σ2), x) is always non-zero in the curve case if x is singular.

Equisingularity of Determinantal Varieties

In this section we bring together many elements of these lectures to prove a theorem on the Whitney
equisingularity of families of determinantal singularities.

The key invariant is the generalization of the invariant md(X
d) in the ICIS case. As in the definition

of md(F
∗JM(Σn)) we pick a smoothing F̃ of F . We can extend the sheaf JM(XF ) over XF̃ by

considering the sheaf of modules generated by the partial derivatives of F̃ with respect to the variables
of Cq, the ambient space of XF . Denote this by JMz(XF̃ ). Now assume X = XF = F−1(Σr); for
simplicity, assume X has a smoothing. Applying the MPT to this set-up (3.22), we know that

md(X) = e(JM(XF ), F ∗(JM(Σr))) + F (Cq) · Γd(Σr) := eΓ(JM(XF ), F ∗(JM(Σr))).

In an analogous way we can define md(mJM(X)), and again we have as a corollary of the MPT,

md(mJM(X)) = e(mJM(XF ), F ∗(JM(Σr))) + F (Cq) · Γd(Σr) := eΓ(mJM(XF ), F ∗(JM(Σr))).

(In picking the smoothing it is necessary to ensure that F̃ (t, 0) /∈ Σr for t 6= 0.) We use the notation
eΓ for the multiplicity of a pair corrected by the curvature of the larger module.

If we have a family of sets XF defined by F : Ct×Cq, Y = Ct×0 ⊂ XF , we show that md(mJM(X))
controls the Whitney conditions for the open stratum of XF along Y . The precise statement follows.

Theorem 3.28. Suppose (Xd+t, 0) ⊂ (Cq+t, 0), X = F−1(Σr), F : Cq+t → Hom(Cn,Cn+k), Y a
smooth subset of X, coordinates chosen so that Ck × 0 = Y , F induced from a deformation of the
presentation matrix of X(0), X equidimensional with equidimensional fibers, of expected dimension,
X(y) has only isolated singularities for all y.

A) Suppose the singular set of X is Y . Suppose eΓ(myJM(Xy), F
∗
y JM(Σr)) is independent of y.

Then the union of the singular points of X(y) is Y , and the pair of strata (X−Y, Y ) satisfies condition
W .

B) Suppose the singular set of X is Y and the pair (X − Y, Y ) satisfies condition W . Then
eΓ(myJM(Fy), F

∗
y JM(Σr)) is independent of y.



Proof. First, we prove A). We can embed the family in a restricted versal unfolding with smooth base
Ỹ l. Consider the polar variety of mY JMz(F ) of dimension l, and the degree of its projection to Ỹ l

along points of Y . The hypothesis on eΓ(myJM(Xy), F
∗
y JM(Σr)) implies by the multiplicity polar

theorem that this degree is constant over Y . In turn this implies that the polar variety over Y does not
split, hence the polar of the original deformation is empty. This implies that the fiber of the exceptional
divisor of BmY

Projan(JMz(F )) cannot be maximal, since there is no polar variety. By the theorem

of Kleiman-Thorup on the dimension of this fiber, it then follows that JMY (F ) ⊂ mY JMz(F ) which
implies W.

This also implies that JM(F ) ⊂ JMz(F ). Hence the union of the singular points of Fy which

is the cosupport of JMz(F ) is equal to the cosupport of JM(F ) which is Y . Then the inclusion

JMY (F ) ⊂ mY JMz(F ) implies W for (X − Y, Y ). (Cf [9].)

Now we prove B). W implies JMY (F ) ⊂ mY JMz(F ) which implies that mY JM(F ) = mY JMz(F ).
We know by [39] that condition W implies that the fiber dimension of the exceptional divisor of

BmY
(C(X)) over each point of Y is as small as possible. The integral closure condition mY JM(F ) =

mY JMz(F ) implies that the same is true for BmY
(ProjanR(JMz(F ))). This implies that the polar of

mY JMz(F ) is empty, hence by the multiplicity polar formula the invariant eΓ(mJM(Fy), F
∗
y JM(Σr))

is independent of y.

We also have a geometric description of our invariant based on the smoothing and the existence of
a unique Milnor fiber.

Theorem 3.29. e(JM(Xy), F
∗
y JM(Σr))+F (y)(Cq)·Γd(Σr) = (−1)dχ(Xs,y)+(−1)d−1χ((X∩H)s,y), Xs,y

a smoothing of X(y).

Proof. (Cf. [11, p. 130], [2].)

Example 3.30. Consider the family of curves Xl, defined by the minors of

FXl
=

 z x
y z
xl y

 .
Then by our previous work we have eΓ(JM(Xl), F

∗
l JM(Σ2)) = 2l + 2, for l = 1 or l − 1 not divisible

by 3, l > 1. Since −χ(Xs,l) + χ((X ∩ H)s,l) = µ(Xl) + m(Xl) − 1, we have µ(Xl) = 2l recovering a
result of Watanabe etal [28].

Challenge Problems and Further Directions in Determinantal Singularities

• In the maximal minor case, the work of [22] gives a formula for the Euler characteristic of a
smoothing of a deterimantal singularity. Can we say something about the Betti-numbers of a
smoothing when there is more than 1? (Frühbis-Krüger and Zach have some results for three-
folds. Cf [7], [42].)

• What is the connection between the results of [22] on the Euler characteristic of a smoothing and
Damon-Pike [5] in the (2,3) case?

• What is the relation in the curve case between between the results of [22] and those of Greuel
and Buchweitz ([4]) and Rosenlicht differentials?

• For what determinantal singularities is the invariant md(X
d) = 0? Hopefully, we can classify

them. In May 2015, work was done giving the dimensions in which they can appear, and a
transversality condition that must be satisfied. In September of 2016 as part of a project with
Ruas and Pedersen, normal forms for the space curve-maximal minor case were found.



• What additional invariants are needed to ensure the singular locus of a family does not split?
In the ICIS case the independence from parameter of md(Xy) ensures the singular locus is the
parameter axis. Because some determinantal singularities have md(X) = 0, this is not true for
families of determinantal singularities, even in the maximal minor (2, 3) case.

• Is there a way to connect the terms that appear in the calculation of the multiplicity of the polar
of F ∗JM(Σn) with the geometry of XF in the (n, n+ k) case?

• What is a formula in terms of the entries of the presentation matrix for F (Cq) ·Γd(Σr), 1 < r < n?

• What can we say about EIDS (Essentially Isolated Determinantal Singularities)? These include
determinantal singularities which are isolated, but cannot be smoothed, because the dimension of
the domain is too large, as well as determinantal singularities which are non-isolated, but which
are well behaved away from the origin.) Some work on these has been done in [22],[23] and other
papers mentioned in their bibliographies.

• Can we calculate the multiplicities of the polar varieties of Σr ⊂ Hom(Cn,Cn+k) at the origin
of Hom(Cn,Cn+k)? This is known for the cases r = n, 2 ([17]). This will give a lower bound
on the size of the contribution of F (Cq) · Γd(Σr) to eΓ(JM(X), F ∗JM(Σr)). Since the Σr are
homogeneous, their ideals define projective varieties, and these multiplicities will be the degrees
of the polar classes of the projective varieties.

• There are other invariants associated with X such as the index of differential forms and the
Milnor number(?) of functions with isolated singularities. Compute these in terms of infinitesimal
invariants similar to those of these lectures.(Cf. [20] for a framework for doing this.)

4 Afterword: Examples of the Point of View of the Introduction

We will talk about two examples of our point of view.

Hypersurfaces with isolated singularities are our first example. Suppose Xn, 0 has an isolated
singularity at the origin, X = f−1(0).

Choose the landscape This is done by looking at the possible deformations of X. We see we can deform
f freely, and still, for small deformations, get a hypersurface with at most isolated singularities. So,
the landscape will be all hypersurfaces in Cn+1 with at most isolated singularities. The generic element
that X deforms to is its Milnor fiber.

Describe the connection between X and its generic element To do this, deform X to its Milnor fiber,
using F (y, z) = f(z)− y. Then the ideal Jz(F ), when restricted to the graph, vanishes only at (0, 0),
so its polar curve is given by the vanishing of the first n partial derivatives, in generic coordinates.
Applying the MPT, we get e(J(f),OX,0) = multCΓn(Jz(F )).

In turn multCΓn(Jz(F )) is the colength of the ideal (f, ∂f
∂z1
, . . . , ∂f

∂zn
) in On+1. This is µ(X) +µ(X ∩

H), H a generic hyperplane.

Determine the first order infinitesimal deformations Since f → f + tg where g is arbitrary, is a first
order defomation, and the corresponding infinitesimal first order deformation is f → ∂f+tg

∂t
= g, the

first order infinitesimal deformations are just OX,0.

Our invariant for controlling Whitney equisingularity is e(mJ(f),OX,0).

If we have a family of hypersurfaces X , then if µ(X)+µ(X∩H) changes, then so must e(J(f),OX,0),
and the exceptional divisor of BJz(F )(X ) must pick up a vertical component and vice-versa. The change



in the topology of the landscape is reflected in a dramatic change in the fibers of the exceptional divisor,
which is the infinitesimal information.

For determinantal singularities the story is similar.

If we look at all possible deformations, then we have examples where the same singularity can be
deformed in two different ways, even giving Whitney equisingular families in which the generic fiber
has non-homeomorphic smoothings ([22]). So, we restrict our deformations by using the same size
presentation matrix. The entries of the matrix can be deformed freely.

Then, the landscape will be the determinantal singularities corresponding to a matrix of fixed size.
The generic element associated to X will be smooth, given some dimension restriction; otherwise we
can say what the stabilizations of the singularity are, and can begin to study those ([24]).

In the case of smoothable singularities, by use of the multiplicity polar theorem and some topology,
we get Theorem 3.29 which gives the connection between the topology of smoothing and the algebraic
invariants of the singularity, which are connected to its infinitesimal geometry. This is generalized in
([24]) to the EIDS case.

The first order infinitesimal deformations of X can be explicitly computed; deform an entry of the
presentation matrix by t, calculate the minors of the order used to define X; taking derivative with
respect to t then gives a map from the defining equations for X into tuples in OgX,0, where g is the
number of defining equations. These give the generators of N(X). It is clear from this formulation
that N is universal and specializes well in families. We can calculate JM(Σ) explicitly–the partial with
respect to the (i, j) entry of the matrix is just the corresponding generator of N . So Σ is stable. The
geometric representation of C(Σn) in terms of kernels of M and M t gives the formula for computing
multCΓd(N(X̃M̃)) using the presentation matrix, but leaves the formula in terms of the entries still to
be determined in general.

Once again, a change at the infinitesimal level of the family is always tied to a change in topology
of the generic related elements. Here, the infinitesimal level of a family X t+d ⊂ Ct+q is the relative
conormal modification CY (X ) of X , which is the limits of tangent hyperplanes in Cq to the fibers
of X over Ct. Assume the singular locus of the family is Ct × 0. By a change at the infinitesimal
level, we mean that the dimension of the fiber of CY (X ) over the origin in X (0) jumps in dimension
from the generic value of q − d − 1 to at least q − 1. This is equivalent to the polar variety of
dimension t of the module JMz(X ) at (0, 0) being non-empty. In turn by the MPT, this implies that
md(X (0)) > md(X (y)), y a generic value of Ct. By Theorem 3.29, this implies that the topology of
the smoothings of X (0) and X (y) are different.
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Rábida, 1981.” J. M. Aroca, R. Buchweitz, M. Giusti and M. Merle (eds.) Springer Lecture
Notes in Math. 961 1982 314–491.

[40] B. Teissier, A. Flores, Local polar varieties in the geometric study of singularities,
arXiv:1607.07979 [math.AG].

[41] Zach, M., Vanishing cycles of smoothable isolated Cohen-Macaulay codimension 2 singularities
of type 2, arXiv:1607.07527.

[42] O. Zariski, Presidential Address, Bulletin A.M.S. 77 No. 4 (1971), 481-491.


